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Landslide susceptibility mapping using GIS-based
multi-criteria decision analysis, support vector
machines, and logistic regression

Abstract Identification of landslides and production of landslide
susceptibility maps are crucial steps that can help planners, local
administrations, and decision makers in disaster planning.
Accuracy of the landslide susceptibility maps is important for
reducing the losses of life and property. Models used for landslide
susceptibility mapping require a combination of various factors
describing features of the terrain and meteorological conditions.
Many algorithms have been developed and applied in the litera-
ture to increase the accuracy of landslide susceptibility maps. In
recent years, geographic information system-based multi-criteria
decision analyses (MCDA) and support vector regression (SVR)
have been successfully applied in the production of landslide
susceptibility maps. In this study, the MCDA and SVR methods
were employed to assess the shallow landslide susceptibility of
Trabzon province (NE Turkey) using lithology, slope, land cover,
aspect, topographic wetness index, drainage density, slope length,
elevation, and distance to road as input data. Performances of the
methods were compared with that of widely used logistic regres-
sion model using ROC and success rate curves. Results showed
that the MCDA and SVR outperformed the conventional logistic
regression method in the mapping of shallow landslides.
Therefore, multi-criteria decision method and support vector re-
gression were employed to determine potential landslide zones in
the study area.
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Introduction
A natural disaster is the effect of an unexpected change in envi-
ronmental conditions (e.g., earthquake, tsunami, flood) which
causes significant level of financial, environmental, or human
losses. Landslides, one of the most destructive natural disasters,
produce drastic changes in the morphology of the landscape and
damages to natural and artificial structures on the Earth.
Landslides are described as mass movements of soil or rock that
involve shear displacement along one or several slip surfaces,
which are either visible or may be reasonably inferred (Varnes
1978). Determining landslide-prone areas is important to ensure
the safety of human life and avoid negative impacts on the regional
and national economy. Determination of landslide-susceptible
zones, producing accurate and up-to-date landslide susceptibility
maps have been highly studied research topics in hazard manage-
ment. These maps provide valuable information for government
agencies, planners, decision makers, and local landowners to make
emergency plans to reduce the negative effects on infrastructure,
superstructure, and human life.

The physical characteristics of Turkey, including tectonic activi-
ties, geological structure, topographical, and meteorological features,

frequently cause natural hazards resulting in social–economic and life
losses of great consequence in the region. Turkey has recently experi-
enced several natural disasters, which resulted in great loss of human
life, injuries, and property damages. When natural disasters were
ordered in terms of their occurrences, landslides take the second place
after the earthquakes. Landslides, particularly shallow ones, aremostly
experienced in Black Sea, Central, and Eastern Anatolian regions. In
Turkey, the highest number of landslides has been recorded in the
province of Trabzon. Since 1929, many people have lost their lives in
this region (Ergünay 2007; Bayrak and Ulukavak 2009).

Up to now, many techniques have been developed and applied in
the literature to produce landslide susceptibility maps. Landslide
modeling techniques can be grouped into several broad categories,
namely geomorphological hazard mapping, analysis of landslide in-
ventories, heuristic methods, and statistical or geotechnical models
(Guzzetti et al. 1999). Within these techniques, probabilistic and sta-
tistical methods have been widely used to determine landslide suscep-
tibility zones. Among the most popular and widely used statistical
method is the logistic regression that has been applied in many local-
and regional-scale landslide susceptibility modeling (Dai et al. 2001;
Ayalew and Yamagishi 2005; Bai et al. 2011; Devkota et al. 2013).
Recently, geographical information system-based multi-criteria deci-
sion analysis has been used to carry out landslide susceptibility as-
sessment (Castellanos Abella and Van Westen 2007; Armas 2011;
Akgun 2012; Neuhauser et al. 2012). Geographic information system
(GIS)-basedmulti criteria decision analysis (MCDA) can be defined as
a decision aid and a mathematical tool allowing the comparison of
different alternatives or scenarios according to many criteria, often
conflicting, in order to guide the decision maker toward a judicious
choice (Roy 1996). Lately, non-parametric techniques including artifi-
cial neural networks, decision trees, and support vectormachines have
been also employed for susceptibility mapping. Specifically, support
vector machines (SVMs), introduced as a robust data mining ap-
proach, have been applied to both classification and regression prob-
lems including landslide susceptibility mapping (Yao et al. 2008; Fu
and He 2010; Yilmaz 2010; Pradhan 2013).

In this study, the MCDA, support vector machine regression
(SVR), and logistic regression methods were used to produce a
landslide susceptibility map of Trabzon province where shallow
landslides are particularly recurrent. Performances of the MCDA
and SVR methods were compared with the performance of logistic
regression method that was regarded as benchmark method in this
study. Landslide inventory map of the study area, formed through
field observations, was used to estimate the accuracies of the land-
slide susceptibility maps. In addition to the evaluations on perfor-
mances using standard accuracy measures (i.e., user’s and overall
accuracies), receiver operating characteristics (ROC), and success
rate curves were applied to make objective and sound comparisons
between the methods.
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Study area and data
The study area is the Trabzon province, a 4,664-km2 area located
south of the Black Sea (NE Turkey). It is situated between 39°15′
and 40°15′ longitudes and 41°8′ and 40°30′ latitudes. The climate is
characteristic of the Black Sea region with temperate in summers
and raining season normally lasting from September to April. The
annual average amount of rain falls in the province is about
830 mm. Nevertheless, the rainfall regime is irregular, with some
periods of rare precipitation with long-lasting heavy rains. In the
region, the rough topography, susceptible weathering units, and
the temperate climate means that many new landslides appear
from time to time, as a result of heavy rainfalls (Yalcin et al.
2011). Heavy rainfall and dense vegetation have increased the
speed of weathering which then considerably reduced the resis-
tance of the overlying units to the risk of landslides (Yalcin 2011).

Geological units of the study area are mainly represented by
Secondary and Tertiary eras consisting of Lias-Dogger (Jlh), Upper
Jurassic–Lower Cretaceous (JCr), Upper Cretaceous–Paleocene
(Cru1, Cru2, Cru3, Cru4b, Cru5b, Cru5a), Eocene (γ2, γ3, Ev), and
Pliocene (Pl) epochs. These rocks are overlain by alluvium, the
youngest unit, which is Quaternary aged. Due to the highly satu-
rated loamy formation and continuous exposure to heavy rain,
shallow landslide occurrence has consistently increased. Another
considerable effect on the increase of landsliding is the steep slope
that begins just from the shore. Although natural causes are
considered as major contributing factors, human factors such as
infrastructure, superstructure, and deforestation also play an im-
portant role in the initiation of shallow landslides in Trabzon
province.

Landslide inventory map
Shallow landslide occurred lands were defined as vector polygons
using handheld Global Positioning System equipment whilst non-
landslide fields, which were required for learning processes, were
determined by applying the approach proposed by Gómez and

Kavzoglu (2005). These polygons were later converted to raster data
that were in 30 m resolution. The approach is based on two basic
facts: Landslide activity is not likely to happen on river channels and
on terrains with slope angles lower than 5°. As a result of above
considerations, 12,029 pixels representing landslide occurrence and
6,280 pixels representing landslide safe areas (i.e., non-landslide
zones) were determined. All pixels were combined into a single
image forming the ground reference map (Fig. 1).

In this study, nine thematic maps associated with lithology,
slope, aspect, land cover, drainage density, topographic wetness
index, elevation, slope length, and distance to road were utilized
for landslide susceptibility mapping. These images were registered to
the Universal Transverse Mercator projection system using ArcGIS
software package. Registered images were stacked on to each other to
form a multi-layer image that was utilized in further stages.

Estimation of input parameters
Landslide susceptibility mapping requires evaluating a number of
land-related factors together. Studies in the literature consider a
variety of parameters including lithology, slope, aspect, elevation,
curvature, land use/cover types, and drainage density (Dai and Lee
2002; Ayalew et al. 2004; Brenning 2005). Moreover, several studies
have regarded additional parameters such as lineaments, topo-
graphic wetness index (TWI), distance to road or settlements,
normalized difference vegetation index, and soil types for suscep-
tibility mapping (Gómez and Kavzoglu 2005; Yilmaz 2010; Pradhan
and Lee 2010). In addition to these parameters, soil thickness and
meteorological conditions that can be considered as a triggering
factor and pre-failure conditions of the recent landslides can be
considered in landslide modeling studies (Santacana et al. 2003;
Suzen and Doyuran 2004; Segoni et al. 2012). In this study, lithol-
ogy, slope, land cover, aspect, elevation, drainage density, slope
length, topographic wetness index, and distance to road were
considered as major factors to produce landslide susceptibility
map of the study area.

Fig. 1 Ground reference map containing landslide and non-landslide area
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Slope
Slope angle is one of the most important factors controlling the
stability of slopes. Slope angle is the form between any part of the
surface of the earth and a horizontal datum. Most of the studies in
literature underline that slope is a major factor causing landslides
(Dai and Lee 2002; Ayalew et al. 2004; Gómez and Kavzoglu 2005). In
order to obtain a slope angle map, digital elevation model (DEM),
produced from 1:25.000-scale topographic maps, was utilized. The
resulting thematic map showed that slope angles ranged from 0° to
86° in the study area. About 33 % of the study area consists of slopes
at 0–20° interval, whilst the rest has higher slopes. Indicating the
mountainous characteristic of the region, this finding was the driving
force for the inclusion of slope factor in determining landslide-prone
areas in the study area. The slope map of the study area was
categorized into 5° intervals, and thus eight subclasses (0–5, 5–10,
10–15, 15–20, 20–25, 25–30, 30–35, 35–86) were formed. As suggested
by many researchers (e.g., Nandi and Shakoor 2010; Yalcin et al.
2011), equal intervals were applied to determine subclasses.

Lithology
Lithology is one of the main factors having a direct effect on the
occurrence of landslides since lithological and structural variations
often lead to changes in strength and permeability of rocks and soils.
Therefore, many researches have considered lithology as an input

parameter to determine landslide susceptibility (Dai and Lee 2002;
Ayalew et al. 2005; Wang et al. 2009). The geological map of the study
area, including 13 lithological units (Fig. 2), was created from
1:100,000-scale geological map published by the General
Directorate of Mineral Research and Exploration of Turkey in 1998
(www.mta.gov.tr).

Each lithological unit was weighted considering both studies in
the literature and a frequency analysis applied to the landslide
inventory map. The analysis revealed that landslides mainly oc-
curred in Ev and upper Cretaceous units (Cru1, Cru2, Cru3, and
Cru4b) to which high weights were assigned. These units mainly
comprise basalt, andesite, pyroclastics, and intercalations of sand-
stones clayey limestone and siltstones. It should be noted that this
preliminary finding is parallel to the results given by Yalcin (2011).

Land cover
Land cover is one of the most sensitive parameters easily affected
by the changes from the environment and human activities.
Therefore, land cover structure of a region inspires the planning
scenarios in landslide management. Some researches (e.g.,
Restrepo et al. 2003; Begueria 2006) have underlined the impor-
tance of land cover in slope instability processes and in landslide
hazard assessments. Vegetation types are affected by soil hydrolo-
gy during increased rainfall interception, infiltration, and

Fig. 2 Lithological map of the study area
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evapotranspiration. Interception and evapotranspiration contrib-
ute on decreasing the amount of water in soil. These factors do not
play an important role during the short heavy rainfall season, but
they can be critical for rainfall in the long period. On the other
hand, artificial effects such as road cuts and construction activities
like infrastructure and superstructure can be the cause of instabil-
ity of soil masses. In this study, Landsat ETM + data for the years
2001 and 2002 were used to produce a 30-m resolution land cover
map. Eight land cover types covering bulk of the study area were
identified. After the classification process using maximum likeli-
hood classifier, a thematic map was produced, including pasture
(38 %), broadleaved forest (33 %), hazelnut fields (11 %), agricul-
tural lands (8 %), coniferous trees (6 %), rocky areas (2 %), urban
lands (1 %), and green tea lands (1 %).

Elevation
Elevation (i.e., height above the sea level) is known by its
effects on biological and natural factors. An increase in eleva-
tion causes a corresponding decrease in temperature and rain-
fall, and these changes cause different plant types to grow.
Vivas (1992) indicates that these conditions are likely to affect
slope stability. Influence of elevation on landslide susceptibility
is a subject open to argument, and this issue is yet to be
clarified by the researchers. However, some researchers utilized
the elevation data in the mapping of landslide susceptibility
(e.g., Dai and Lee 2002; Gómez and Kavzoglu 2005). Due to the
above considerations, the elevation data derived from the DEM
of the study area were employed in landslide susceptibility
modeling. Elevations ranging from 0 to 3,385 m were catego-
rized by 500-m equal intervals. As a result, a thematic map
with seven elevation classes was produced.

Aspect
Aspect is the orientation or direction of slope that is measured
clockwise in degrees from 0° to 360°, where 0° is north-facing, 90°
is east-facing, 180° is south-facing, and 270° is west-facing. Aspect
associated parameters such as exposure to sunlight, drying winds,
rainfall (degree of saturation), and discontinuities are important
factors in triggering landslides (Dai et al. 2001). In the present
work, the DEM image was used to calculate the aspect values for
each pixel to construct the aspect image. Then, the image was
reclassified into ten categories: flat (−1°), north (0°–22.5°, 337.5°–
360°), northeast (22.5°–67.5°), east (67.5°–112.5°), southeast (112.5°–
157.5°), south (157.5°–202.5°), southwest (202.5°–247.5°), west
(247.5°–292.5°), northwest (292.5°–337.5°).

Drainage density
Drainage density is the total length of all streams and rivers in a
drainage basin divided by the total area of the drainage basin.
Drainage density provides an indirect measure of groundwater
conditions having an important role in landslide activity. Sarkar
and Kanungo (2004) state that there is an adverse relationship
between landslides and drainage density. Considering the relation-
ship between drainage density and landslide, it can be stated that
as the drainage density increases, the landslide susceptibility in-
creases. Drainage density is calculated from;

Dy ¼
X

L A= ð1Þ
where Dy is the drainage density, L is the stream length, and A is the

catchment area. Dy was estimated for each catchment area, that is,
drainage density value was constant for all pixels within the same
catchment region. Drainage density map of the study area was
produced from the DEM using an appropriate algorithm in ArcGIS
software. The resulting map was reclassified into eight classes with
equal intervals to be used in subsequent analyses.

Topographic wetness index
TWI was developed by Beven and Kirkby (1979) within the rain-
fall-runoff model TOPMODEL. At any point within a river basin,
TWI is represented by a theoretical measure of the accumulation
of flow. Soil moisture effect on slope material causes pore water
pressures and decreases the soil strength, and thus, soil moisture
directly influences slope instability, particularly for landslides.
TWI is widely used in shallow landslide susceptibility mapping
(Gokceoglu et al. 2005; Gómez and Kavzoglu 2005; Yilmaz 2009).
In the estimation of wetness index, the sinks in the raster image
are removed using a depressionless DEM algorithm. After the
determination of multiple flow directions from the resulting
DEM image, flow accumulation area (As) and tangent of slope
(tan β) images are produced. TWI data of the study area were
created using the equation given below,

TWI ¼ 1n As tan b=ð Þ ð2Þ

where As is the specific catchment area and β is from the slope
gradient. Topographic wetness index map, including values rang-
ing from −4.46 to 16.06, was reclassified into ten classes with equal
intervals of the TWI values.

Distance to road
Distance to road has a strong relation with landslide occurrence
that can be the cause of cut slope creations through construction
of roads that disturbs the natural topology and affects the stability
of the slope. The existing roads built on sloping lands cause
topographical changes under static load. The stability of a slope
may change from stable to unstable during road constructions and
vehicle movements (Collins 2008; Yalcin et al. 2011). These slope
activities may occur as a result of cracks that lead to high water
absorption of the soil and these negative influences, such as water
saturation, can trigger landslides. This study also considers prox-
imity to the roads for landslide occurrence. For this reason, dis-
tance to road map was created from an existing shapefile through
a buffer analysis based on 25-m distance intervals from the central
line of the roads.

Slope length
The slope length parameter has been considered in many GIS-
based applications including landslides and soil erosions (Hickey
2000; Gómez and Kavzoglu 2005). Slope length can be defined as
the distance along a slope subject to uninterrupted overland flow.
It is an important factor in landslide activity since longer slope
lengths increase the potential of erosive agents to transport mate-
rials downslope (Gómez and Kavzoglu 2005). Short slope lengths
lead to limited flow velocity; therefore, soil masses cannot get
enough flow energy to detach and transport materials over down-
slope (Chaplot and Le Bissonnais 2000). Slope lengths are com-
puted on the horizontal and normal to the contours of the surface
of the slope. Slope length is calculated by following formulation
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(Liu et al. 2000; Conforti et al. 2011):

L ¼ 1 22:1=ð Þm ð3Þ

where L is the slope length, λ is the slope length along the
horizontal projection rather than along the sloping surface, and
m is the relationship between the length and degree of slope, and it
is defined as,

m ¼ b 1þ bð Þ ð4Þ

where β is the ratio of rill erosion to interrill erosion. In the
present study, the slope length map was derived by the DEM of
the study area, and then it was divided into ten classes at 25-m
equal intervals.

Landslide susceptibility mapping methods
In this study, landslide susceptibility maps were generated using GIS-
based MCDA, SVR, and logistic regression methods. After applying
theMCDA and SVRmethods, logistic regressionmodel was used as a
benchmarkmethod to compare and validate the performances in the
determination of shallow landslide susceptibilities. The quality of the
resulting thematic maps was tested using both accuracy measures
and ROC curves.

GIS-based multi-criteria decision analysis
GIS-based MCDA is a process that transforms and combines geo-
graphical data and value judgments to obtain information for decision
making (Malczewski 1999). Although several methods exist for esti-
mation of decision criteria in the MCDA, the analytical hierarchy
process (AHP) developed by Saaty (1980) is the most popular one.
AHP is a flexible, yet structured methodology for analyzing and
solving complex decision problems by structuring them into a hier-
archical framework. It is employed for rating/ranking a set of alterna-
tives or for the selection of the best in a set of alternatives. The ranking
is carried out with respect to an overall goal, which is broken down
into a set of criteria (objectives or attributes) (Boroushaki and
Malczewski 2008). In other words, AHP is used to determine the
weights of each criterion and analyze the relative importance of these
criteria.

The first step of the AHP procedure is to decompose the decision
problem into a hierarchy that consists of the most important elements
of the decision problem. In developing a hierarchy, the top level is the
ultimate goal of the decision at hand (Malczewski 1999). For spatial
decision problems, decision elements are represented by a GIS data-
base. In the second step, the input data are collected by pairwise

comparison of decision elements, which is the basic measurement
mode employed in the AHP procedure. Factor weights are obtained
from the pairwise comparison matrix or ratio matrix undertaking
eigenvalues and eigenvectors calculations. Pairwise comparison ma-
trix is defined as follows:

A ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. . .
. ..

.

an1 an2 � � � anm

0
BBB@

1
CCCA

¼
1 w1 w2= � � � w1 wn=
w2 w1= 1 � � � w2 wn=

..

. ..
. . .

. ..
.

wn w1= wn w2= � � � 1

0
BBB@

1
CCCA ð5Þ

whereA is the comparisonmatrix, which entry aij expresses howmuch
the criteria xi is preferred to criteria xj. If all criteria are already known,
each comparison value aij equals to wi/wj. In order to determine the
relative weights, decision makers are asked to make pairwise compar-
ison with values ranging from 1 to 9 (Table 1).

Criterion maps and their resulting weights can be used in weight-
ed linear combination (WLC) function to aggregate criteria and pro-
duce a single score. WLC function is used to standardize the factor
maps, ensuring that the sum of the set of factor weights is equal to 1.
The overall scores are calculated for all criteria, and the criterion with
the highest overall score is chosen. WLC method can be described by
the following formula,

S ¼
X
i

wiμi
ð6Þ

where S is the final score,wi is the normalized weight of the criterion i,
and μi is the criterion standardized score of the creation. Each factor
map must be standardized or normalized to a same scale. The nor-
malization process is identical to the process introduced by fuzzy
logic, according to which a set of values expressed on a given scale is
converted to another comparable set, expressed on a normalized scale
(Melo et al. 2006). The fuzzy set theory introduced by Zadeh (1965) is,
in short, the step following approximation between the precision of
classical mathematics and the imprecision of the real world. The fuzzy
set theory provides a rich mathematical basis for understanding
decision problems and constructing decision rules in criteria evalua-
tion and combination (Eastman 2003). In this theory, all factor layers
are standardized to a continuous scale of suitability from 0 to 255 or
from 0 to 1. Zero is assigned to the least vulnerable areas and 255 (or 1)
to the most vulnerable areas, which is used to create thematic map
layers. In this study, the “FUZZY” module of IDRISI was used for
constructing fuzzy set membership functions.

Support vector machines
SVMs based on the statistical learning theory has been widely
used as a data mining technique to solve many complex clas-
sification and regression problems (Brenning 2005; Kavzoglu
and Colkesen 2009; Ballabio and Sterlacchini 2012). SVMs are
originally developed as a binary classifier aiming to find a
linear hyperplane that separates two classes optimally (Vapnik
1999). For binary classification problems, SVMs try to find a

Table 1 Scales for pairwise comparisons

Intensity of
importance

Verbal judgment of preference

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2, 4, 6, 8 Intermediate values between adjacent scale values
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separating hyperplane in the feature space such that the dis-
tance between the positive and negative samples is maximized
for the linearly separable case (Fig. 3a). The hyperplane pro-
viding maximum margin between two classes is called optimum
hyperplane and the points that constrain the width of the
margin are called support vectors. In many classification and
regression problems, it is difficult to separate data linearly
(Fig. 3b). In such cases, the technique can be extended to allow
for nonlinear decision surfaces (Cortes and Vapnik 1995). SVMs
can handle data possessing of non-linear relationship using the
kernel functions K xi ; xð Þ ¼ 8 xið Þ:8ðxÞð Þ. As illustrated in Fig. 3b,
these functions transform the original input space to a higher
dimensional feature space where an optimal linear separating
hyperplane is constructed.

Support vector regression with ε-intensive loss function (SVR)
seeks an optimum hyperplane, from which the distance to all data
points is minimum. When it is assumed that a training data set
containing n number of samples is represented by xi ; yif g (i01, …, n)
where xi is the input and yi is the output, the problem is to seek a
function f(x) that has at most ε deviation from the actually obtained
target yi for all training data and, at the same time, is as flat as possible
(Smola and Scholkopf 2004). As it can be seen from Fig. 4, the
hyperplane is defined as a linear function f ðxÞ ¼ w:xh i þ b, where x
is a point lying on the hyperplane, parameter w determines the orien-
tation of the hyperplane in space, and b is the bias that is the distance of
hyperplane from the origin.

SVR performs linear regression in a high dimension feature space
using ε-insensitive loss function and, at the same time, tries to reduce

model complexity by minimizing wk k2 (Cherkassky and Ma 2004).
Thus, SVR is formulated asminimization of the following optimization
problem,

Minimize 1
2 wk k2 þ C

X1

i¼1

xi þ x*i ð7Þ

subject to
yi � w:xih i � b � "þ xi
w:xih i þ b� yi � "þ x*i

xi; x
*
i � 0

8<
:

9=
; ð8Þ

where ξi and xi
* (i01 … n) are slack variables that measure the

deviation of training samples outside ε-insensitive zone, and C is
the regularization constant or penalty parameter that determines
the trade-off between training error and model complexity. The
SVR function that approximates the non-linear training data can
be written as,

f ðxÞ ¼ w:8ðxÞ þ bð Þ ¼
Xn
i¼1

ai � a*i
� �

K xi; xð Þ þ b ð9Þ

where αi and a*
i are Lagrange multipliers ai � 0; a*i � C

� �
.

The generalization performance of SVR depends on the setting
of some parameters, namely C, ε, and kernel-related parameters. In
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Fig. 3 Hyperplanes for a linearly separable data and b non-linear separable data
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this study, radial basis function was chosen as the kernel function
due to its robustness as reported by researchers (e.g., Cherkassky and
Mulier 2007; Kavzoglu and Colkesen 2009).

Logistic regression model
Logistic regression (LR) model is measured with dichotomous
variables such as 0 or 1, and it is determined from one or
more independent factors (Menard 2001). The general purpose
of the model is to determine the best fitting model to describe
the relationship between the dependent variable (e.g., land-
slides) and set of independent parameters (e.g., slope, land
cover, lithology). The advantage of the model is that the de-
pendent variable can have only two values, an event occurring
or not occurring, and that predicted values can be interpreted
as probability since they are constrained to fall in the interval
0 and 1 (Dai and Lee 2002). LR model is based on the
generalized linear model that can be calculated by the following
equation:

P ¼ 1
1þ ezð Þ ð10Þ

where P is the probability of an event. Z is a value from −∞ to
+∞, defined by the following equation;

Z ¼ B0 þ B1X1 þ B2X2 þ . . .þ BnXn ð11Þ

B0 is the intercept of model, n is the number of indepen-
dent variables, and B1, B2, …, Bn are coefficients, which mea-
sure the contribution of independent variables (X1, X2, …, Xn)
(Ayalew and Yamagishi 2005; Akgun 2012). In the logistic re-
gression model, the dependent variable can be expressed as,

LogitðpÞ ¼ ln p 1� pð Þ=ð Þ ¼ 1 1þ e�B0þB1X1þB2X2þ���þBnXn
� ð12Þ

where p is the probability that the dependent variable has
values of only 0 and 1 and p/(1−p) is the so-called odds or
likelihood ratio. Probabilities vary between 0 and 1. As a
probability gets closer to 1, the numerator of the odds becomes
larger relative to the denominator, and the odds become an
increasingly large number. On the contrary, if a probability gets
closer to 0, the numerator of the odds becomes smaller relative
to the denominator (Ayalew and Yamagishi 2005).

Results and discussions
The effectiveness of MCDA and SVR methods was evaluated for
landslide susceptibility mapping problem considered in this study.
Performances of the methods were compared with that of LR
model that is widely used in the literature. In order to apply these
methods, training and test data sets, including landslide and non-
landslide zones, were created using a ground reference map. Image
layers representing the landslide-related parameters considered in
this study were stacked to compose a multi-layer image. The
ground reference map and the multi-layer image were used to
create the training and testing data sets using a random sampling
strategy. The data sets were created with equal numbers of samples
for each class (i.e., landslide and non-landslide). With the above
considerations, 4,000 pixels for training and 6,000 pixels for

b

w

*

Optimum Hyperplane

Support vectors

- +0

Fig. 4 The insensitive band for one dimensional linear regression problem

Table 2 Fuzzy membership functions used for landslide factors

Factors Fuzzy sets
Function type Function form Fuzzy numbers

Lithology User-defined f(lithology)
a –

Slope Sigmoidal Monotonically increasing a,b,c05º, d027°

TWI Sigmoidal Monotonically increasing a,b,c0−4.49, d016.06

Land cover User-defined f(land cover)
b –

Drainage density Sigmoidal Monotonically increasing a,b,c00, d00.0006

Aspect User-defined f(aspect)
c –

Slope length Sigmoidal Monotonically decreasing a,b,c00 m, d01,000 m

Elevation Sigmoidal Monotonically decreasing a,b,c00 m, d02,500 m

Distance to road Sigmoidal Symmetric a00, b025, c075, d0125 m

a f(lithology)0 (0.4/1, 0.3/2, 0.5/3, 0.8/4, 0.1/5, 0.1/6, 0.1/7, 0.6/8, 1/9, 0.7/10, 0.8/11, 0.8/12, 0.5/13)
b f(land cover)0 (1/1, 0.4/2, 0.3/3, 0.2/4, 0.8/5, 0/6, 0.7/7, 0/8)
c f(aspect)0 (0.2/1, 0.5/2, 1/3, 0.5/4, 0.2/5, 0.8/6, 1/7, 0.8/8, 0.1/9)
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testing were selected for further processes. It should be noted that
the same training and test data sets were employed in the appli-
cation of all methods considered in this study.

A variety of performance measures were discussed in the liter-
ature to analyze the thematic map accuracy (Foody 2004). However,
individual and overall accuracy measures derived from the error
matrix have been the most popular ones. On the other hand, several
statistical tests including F-measure, mean squared error, and ROC
statistics have been suggested to compare performances of the
methods (De Leeuw et al. 2006; Ferri et al. 2009). In this study, in
addition to user’s and overall accuracies derived from contingency
matrices, success rate curve and ROC statistics, which show good-
ness of fit, were used to compare the performances of the landslide
susceptibility methods.

Multi-criteria decision analysis model
Since the input layers representing landslide-related parameters or
factors were at different scales or intervals, they were standardized
using AHP method, as described above. Landslide factor maps were
standardized based on fuzzy membership function using “FUZZY”
module of Idrisi Taiga software. In the standardization of factor
maps, sigmoidal fuzzymembership functions and user-defined func-
tions were used for each factor (Table 2). A monotonically increasing
sigmoidal fuzzy membership function was used for slope, TWI, and
drainage density images, while a monotonically decreasing sigmoi-
dal fuzzy membership function was used for slope length and eleva-
tion images. On the other hand, user-defined membership functions
were applied for lithology, land cover, and aspect images.

Calculation of the factor weights has a crucial role in the pro-
duction of landslide susceptibility maps when applying the MCDA
technique. The eigenvector method based on pairwise comparison
was employed for this purpose, in that each factor was ranked
considering its importance by scale ranging from 1 to 9. After the
pairwise comparison matrix was formed, weights of the factors were
calculated (Table 3). It was seen that the highest weight was assigned
to the lithology map, which is considered as an expected result
considering the previous studies in the field (e.g., Yalcin et al. 2011;
Akgun 2012). Slope, TWI, and land cover factors were also found
effective (i.e., primary factors). The others (i.e., aspect, slope length,
drainage density, elevation, and distance to road) were identified as
less important or secondary parameters.

In AHP method, consistency ratio (CR) is used to indicate the
probability that the matrix judgments were randomly generated. CR
value of 0.1 or less is a reasonable level of consistency (Malczewski
1999). If the CR value is greater than this level, inconsistency of
judgments within that matrix occurs, and the evaluation process
should revise the original values in the pairwise comparison matrix.
In this study, the CR value for the pairwise comparison matrix was
estimated as 0.06, confirming a valid consistency.

Each evaluated factor was calculated using WLC method avail-
able in MCE module of Idrisi Taiga software. The weights from
pairwise comparison matrix were multiplied by the factor maps,
and all weighted factor maps were then aggregated. At this point,
the resulting map was reclassified into several meaningful suscepti-
bility classes for presentation and evaluation purposes. In the litera-
ture, several mathematical or experimental approaches including
natural breaks, standard deviations, equal interval, and expert-based
classifiers have been suggested for this purpose (Guzzetti et al. 1999;
Ayalew et al. 2004; Suzen andDoyuran 2004; Akgun 2012). An expert- Ta
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based classification or density slicing was used to define class in-
tervals in this study. All landslide susceptibility maps were
reclassified into five susceptibility levels as: very low, low, moderate,
high, and very high (Fig. 5). It was observed that high landslide-
susceptibility zones were generally situated in the central part of the
study area. These zones were mainly located on the areas with high
slope and sensitive lithological units (e.g., Cru1, Cru2, and Cru3). On

the other hand, the north (i.e., coastline) and south sides of the study
area were generally covered by low susceptibility zones.

Support vector regression model
The SVR model was utilized together with the radial basis function
kernel to produce a landslide susceptibility map of the study area.
Meta-parameters of C, ε, and γ (kernel width) were selected after a

Fig. 5 Landslide susceptibility map produced by GIS-based MCDA method

Fig. 6 Landslide susceptibility map produced by SVR model
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cross-validation stage. As a result, optimum values of ε, C, and γwere
determined as 0.001, 100, and 0.1, respectively. Root mean square
error was calculated as 0.30 when the trained SVR model was tested
on the test data set. The model was then applied to the multi-layer
image consisting of nine landslide parameters to estimate the suscep-
tibilities of the pixel in the image. Resulting susceptibility map was
reclassified to show five susceptibility levels using expert-based clas-
sification approach (Fig. 6). In contrast to the MCDA procedure
(Fig. 5), the north-west side of Trabzon province was mainly classified
as very high and high susceptible zones. Also, a large number of high
susceptible zones were located in the north-east of the study area.
These zones are mostly located on the lithological units of Ev, Cru2,

and Cru3. Moderate susceptible zones were usually located in the east
and central parts of the study area. Lastly, the south and south-east
parts of the study area were largely described as low susceptibility.

Logistic regression model
LR model was employed as a benchmark method to estimate the
probabilities for landslide susceptibility map. In performing sus-
ceptibility analysis, the independent variables were lithology,
slope, land cover, TWI, slope length, road to distance, elevation,
aspect, and drainage density, whilst the dependent variable was
landslide samples in the inventory map. It should be noted that the
ground reference map comprising 147 landslide fields (12,029

Table 4 Logistic regression coefficients and Wald statistics

Variable β SE Wald Significance

Slope 1.094 0.047 532.559 0.000

Drainage Density 0.664 0.033 412.072 0.000

Elevation −0.550 0.060 85.468 0.000

TWI −0.329 0.063 27.496 0.000

Slope length 0.238 0.110 532.559 0.030

Land cover −0.076 0.026 8.900 0.003

Distance to road −0.046 0.042 1.193 0.275

Lithology
Alv −4.406 0.390 127.734 0.000

Pl 3.560 0.422 71.324 0.000

γ3 −14.744 0.000 0.000 0.000

Ev 6.342 0.322 388.681 0.000

γ2 2.515 0.326 59.324 0.000

Cru5a 4.199 0.323 169.039 0.000

Cru5b −17.267 8,452.354 0.000 0.998

Cru4b 10.204 0.455 503.235 0.000

Cru3 8.980 0.334 724.465 0.000

Cru2 10.647 0.540 389.281 0.000

Cru1 10.733 0.435 607.916 0.000

JCr −0.242 0.346 0.488 0.485

Jlh −0.001 0.000 0.000 0.000

Aspect
Flat −2.652 0.678 15.279 0.000

0–22.5 0.791 0.334 5.609 0.018

22.5–67.5 1.112 0.268 17.199 0.000

67.5–112.5 1.261 0.263 22.941 0.000

112.5–157.5 1.063 0.265 16.123 0.000

157.5–202.5 1.289 0.279 21.295 0.000

202.5–247.5 1.272 0.293 18.905 0.000

247.5–292.5 1.544 0.274 31.816 0.000

292.5–337.5 0.908 0.262 12.026 0.001

337.5–360 −0.001 0.000 0.000 0.000
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pixels) and 70 non-landslide fields (6,280 pixels) were used to
produce a dependent variable. The spatial relationship between
landslide occurrence and landslide-related parameters was deter-
mined through the coefficients of the logistic regression model
using SPSS software (Table 4). While the positive values of the
logistic regression coefficient imply that the occurrence of land-
slides is positively related (i.e., the independent variable increases
the probability of a landslide), negative values of the coefficients
have a negative relationship with the landslide occurrence. The
Wald test was employed to assess the statistical significance of the
coefficients (β) representing individual variables. The Wald statis-
tical values increase with significance of β coefficients. Among
lithological units, Cru3, Cru1, and Cru4b are the main landslides
conditioning factors, respectively. When all variables are consid-
ered, it can be easily noticed that the slope angle is the most
effective factor as expected. On the other hand, distance to road

variable is found the least effective variable among the others.
When more than two variables are involved, this is often

called as multicollinearity, and model fitting with logistic regres-
sion is sensitive to collinearities among the independent variables
(Hosmer and Lemeshow 1989). Tolerance (TOL) and the variance
inflation factor (VIF) are two important indices to assess the
multicollinearity among the variables. A TOL value less than 0.2
is an indicator for multicollinearity, and serious multicollinearity
occurs between independent variables when the TOL values are
smaller than 0.1 (Menard 2001). If VIF value exceeds 10, it is often
regarded as an indication for multicollinearity. The TOL and VIF
values in this study are estimated and shown in Table 5, indicating
that there is no multicolinearity between any of the variables
considered in this study.

Landslide susceptibility map generated by the logistic regres-
sion method was also reclassified into five susceptibility classes
using expert-based classification approach (Fig. 7). The north of
the study area was generally identified as highly susceptible to
landslides, whilst the south was determined as having low suscep-
tibility to landslides. High and very high susceptibility regions
were mostly located on lithological units of Ev, Cru2, and Cru4b.

Analysis of the results
In order to determine the accuracies of the landslide susceptibility
maps produced by the three methods, confusion matrices were
calculated using the test data set (Table 6). It should be noted that
lands classified as very high, high, and moderate were considered
as landslide zones, and the rest (i.e., low and very low) were
considered as non-landslide zones in accuracy assessment stage.
The GIS-based MCDA, SVR, and LR methods resulted in classifi-
cations with overall accuracies of 77.49 %, 75.12 %, and 69.29 %,
respectively. That is, the GIS-based MCDA method was superior to
the other methods with slight difference with the SVR method. The

Table 5 The multicollinearity analysis for variables

Variable TOL VIF

Slope 0.465 2.152

Drainage density 0.584 1.713

Elevation 0.467 2.141

TWI 0.737 1.358

Slope length 0.529 1.890

Land cover 0.857 1.167

Distance to road 0.907 1.103

Lithology 0.634 1.576

Aspect 0.882 1.134

Fig. 7 Landslide susceptibility map produced by logistic regression
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LR method produced the lowest performance. Another accuracy
measure applied to the test data set was the user’s accuracy
showing the probability that pixels classified on the image actually
represents that category on the ground. This accuracy measure
was used to estimate individual accuracies of the classes (i.e.,
landslide and non-landslide pixels), and the results are given in
Table 6. It can be seen from the table that the highest user’s
accuracies were produced by the GIS-based MCDA method as
90.33 % for non-landslide pixels and by the SVR method as
71.75 % for landslide pixels present in the test data set. On the
other hand, the lowest user’s accuracies for landslide (64.62 %)
and non-landslide (78.58 %) pixels were both obtained by the LR
method. When the individual accuracies of the methods were
considered, the GIS-based MCDA method can be declared as the
“best” method generating lower misclassification rates.

In order to determine the statistical reliability of the results,
the area under the ROC curve, or simply AUC, and success rate

curve were employed. The AUC is a good indicator to evaluate the
prediction performance of the model, and the largest AUC, varying
from 0.5 to 1.0, is the most ideal model (Yesilnacar and Topal 2005;
Yilmaz 2010). AUC values between 0.7 and 0.9 indicate reasonable
discrimination ability. Additionally, AUC values higher than 0.9
show typical of highly accurate classification models (Swets 1988).
The ROC curves and calculated AUC values for the MCDA, SVR,
and LR methods are shown in Fig. 8. AUC values of the MCDA,
SVR, and LR models were calculated as 0.9384, 0.9321, and 0.9108,
respectively, indicating acceptable level of performance.

In order to obtain the success rate curve for each susceptibil-
ity map, the calculated prediction values of all pixels in the sus-
ceptibility images were sorted in descending order. Values were
then categorized into 100 classes with 1 % cumulative intervals in
ArcGIS 10. These maps were overlaid with the landslide inventory
map of the study area. Thus, the success rate curves of the three
methods were created from the cross-table values (Fig. 9). The

Table 6 Confusion matrices estimated for MCDA, SVR, and LR

Landslide Non-landslide User’s accuracy (%)

MCDA Landslide 8,514 3,515 70.78

Non-landslide 607 5,673 90.33

Overall accuracy077.49 %

SVR Landslide 8,631 3,398 71.75

Non-landslide 1,158 5,122 81.56

Overall accuracy075.12 %

LR Landslide 7,773 4,256 64.62

Non-landslide 1,345 4,935 78.58

Overall accuracy069.41 %

Fig. 8 ROC statistics for the methods used in landslide susceptibility
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success rate analysis reveals that 10 % of the study area where
susceptibility rate had a higher rank could explain approximately
55 % of observed landslides for MCDA, 37 % for SVR, and 30 % for
LR. Similarly, 50 % of the study area could explain about 99 % of
observed landslides for MCDA, 97 % for SVR, and 85 % for LR
(Fig. 9).

Conclusions
Identification of landslide-prone regions and determining their lo-
cations according to given susceptibility levels play an important role
for the success of planning activities. Many methods have been
suggested in the literature to produce landslide susceptibility maps.
In this study, effectiveness of the GIS-based MCDA and SVR
methods were assessed in the determination of shallow landslide
susceptibility map of Trabzon province in NE Turkey. Performances
of the methods were compared with that of widely used logistic
regression model. These methods were employed using lithology,
slope, land cover, aspect, topographic wetness index, drainage den-
sity, slope length, elevation, and distance to road factors.

In the analysis of logistic regression results, the Wald statistics
was applied to analyze the statistical significance of the coefficients
and found that lithology and slope layers were the most effective
factors leading to landslide occurrence in the study area. For
multicolinearity testing, the TOL and VIF values were estimated,
and it was found that there was no multicolinearity between any of
the variables considered. When the logistic regression model was
applied to whole image, the north of the study area was generally
identified as highly susceptible to landslides that are mainly located

on lithological units of Ev, Cru2, and Cru4b. On the other hand, the
MCDA method indicated that high landslide susceptibility zones
were generally situated in the central part of the study area that are
mainly located on the lithological units of Cru1, Cru2, and Cru3.
Conversely, the north-west side of Trabzon province was mainly
classified as very high and high susceptible zones by the SVR meth-
od. These zones were mostly located on the lithological units of Ev,
Cru2, and Cru3.

Accuracy assessment results showed that the MCDA and SVR
methods outperformed logistic regression method by about 8 % in
terms of overall accuracy considering ground reference map. On the
other hand, the area under the ROC curves (AUC) and success rate
curves were estimated to test the statistical reliability of the results.
Considering both statistics, all methods generated acceptable results,
and the GIS-based MCDA method produced slightly better results
than the SVM method.

Compared with the logistic regression model, the GIS-based
MCDA and SVR methods had several advantages, including han-
dling complex and non-linear data sets. Besides these important
advantages, these sophisticated methods have several drawbacks.
The main difficulty in the use of the MCDA is the determination of
optimal values of the weights assigned for each parameter pair,
whereas the selection of kernel parameters and determination of
their optimal values are crucial for the success of the SVR method.
Although the logistic regression is a simple and widely used method,
it was found inferior in shallow landslide susceptibility mapping
considered in this study. To sum up, the GIS-based MCDA and
SVR methods producing similar results were found effective in the

Fig. 9 Success rate curves of landslide susceptibility values calculated from MCDA, SVR, and LR methods
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modeling of shallow landslide susceptibility in spite of difficulty or
expertise required in their use.
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